Improving the reliability of chip-off forensic analysis of NAND flash memory devices
نویسندگان
چکیده
Digital forensic investigators often need to extract data from a seized device that contains NAND flash memory. Many such devices are physically damaged, preventing investigators from using automated techniques to extract the data stored within the device. Instead, investigators turn to chip-off analysis, where they use a thermal-based procedure to physically remove the NAND flash memory chip from the device, and access the chip directly to extract the raw data stored on the chip. We perform an analysis of the errors introduced into multi-level cell (MLC) NAND flash memory chips after the device has been seized. We make two major observations. First, between the time that a device is seized and the time digital forensic investigators perform data extraction, a large number of errors can be introduced as a result of charge leakage from the cells of the NAND flash memory (known as data retention errors). Second, when thermal-based chip removal is performed, the number of errors in the data stored within NAND flash memory can increase by two or more orders of magnitude, as the high temperature applied to the chip greatly accelerates charge leakage. We demonstrate that the chip-off analysis based forensic data recovery procedure is quite destructive, and can often render most of the data within NAND flash memory uncorrectable, and, thus, unrecoverable. To mitigate the errors introduced during the forensic recovery process, we explore a new hardwarebased approach. We exploit a fine-grained read reference voltage control mechanism implemented in modern NAND flash memory chips, called read-retry, which can compensate for the charge leakage that occurs due to (1) retention loss and (2) thermal-based chip removal. The read-retry mechanism successfully reduces the number of errors, such that the original data can be fully recovered in our tested chips as long as the chips were not heavily used prior to seizure. We conclude that the read-retry mechanism should be adopted as part of the forensic data recovery process. © 2017 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Using GPUs to Forensically Recover Non-Addressable Data on Hardware-FTL-Backed NAND Storage
We present work-in-progress towards a general, parallelized method to identify leftover data in nonaddressable regions of NAND flash storage devices for which the storage interface does not allow access to all the data regions (such as with thumb drives and SSDs). Significant amounts of data can wind up in non-addressable regions through regular use of the NAND flash storage that cannot be acce...
متن کاملDesign of on-chip error correction systems for multilevel NOR and NAND flash memories
The design of on-chip error correction systems for multilevel code-storage NOR flash and data-storage NAND flash memories is concerned. The concept of trellis coded modulation (TCM) has been used to design on-chip error correction system for NOR flash. This is motivated by the non-trivial modulation process in multilevel memory storage and the effectiveness of TCM in integrating coding with mod...
متن کاملThe Characterisation of TLC NAND Flash Memory, Leading to a Definable Endurance/Retention Trade-Off
Triple-Level Cell (TLC) NAND Flash memory at, and below, 20nm (nanometer) is still largely unexplored by researchers, and with the ever more commonplace existence of Flash in consumer and enterprise applications there is a need for such gaps in knowledge to be filled. At the time of writing, there was little published data or literature on TLC, and more specifically reliability testing, with a ...
متن کاملA visual approach to interpreting NAND flash memory
The research described in this paper proposes methods for visually interpreting the content of raw NAND flash memory images into higher level visual artefacts of assistance in reverse engineering and interpreting flash storage formats. A novel method of reverse engineering the structure and layout of individual memory locations within NAND flash images, based on injecting a known signal into a ...
متن کاملError Correction Codes and Signal Processing in Flash Memory
This chapter is to introduce NAND flash channel model, error correction codes (ECC) and signal processing techniques in flash memory. There are several kinds of noise sources in flash memory, such as random-telegraph noise, retention process, inter-cell interference, background pattern noise, and read/program disturb, etc. Such noise sources reduce the storage reliability of flash memory signif...
متن کامل